NEW STANDARD ACADEMY

Date: 29-07-24 CLASS: 11TH JEE Time: 3 HRS

PHYSICS

1. Two blocks of masses 5 kg and 2 kg are initially at rest on the floor. They are connected by a light string, passing over a light frictionless pulley. An upward force F is applied on the pulley and maintained at a constant value. Calculate the acceleration a₁ and a₂ of the 5 kg and 2 kg masses, respectively, when F is (take g = 10 ms⁻²)

2. In the arrangement shown in the figure, $m_1 = 1 \text{ kg}$, $m_2 = 2 \text{ kg}$. Pulleys are massless and strings are light. For what value of M the mass m_1 moves with constant velocity.

- 3. Two forces, with equal magnitude F, act on a body and the magnitude of the resultant force is F/3. Find the angle between the two forces.
- 4. Find the acceleration of block B in the figure.

5. Three equal weights A, B, C of mass 2 kg each are hanging on a string passing over a fixed frictionless pulley as shown in the figure. The tension in the string connecting weights B and C is

6. Two masses 40 kg and 30 kg are connected by a weightless string passing over a frictionless pulley as shown in the following figure. The tension in the string will be

7. Two bodies of mass 4 kg and 6 kg are attached to the ends of a string passing over a pulley. The 4 kg mass is attached to the table top by another string. The tension in this string T_1 is equal to (Take g = 10 m/s²)

- 8. If rope of lift breaks suddenly, the tension exerted by the surface of lift.
- 9. A body of mass 5 kg is suspended by a spring balance on an inclined plane as shown in figure. The spring balance measures

10. A body of weight 2 kg is suspended as shown in the figure. The tension T₁ in the horizontal string (in kg wt) is

CHEMISTRY

- 1. Describe reversible and irreversible processes & write the difference between them.
- 2. Write the definition & significant features of "U"
- 3. Write First law of thermodynamics with its mathematical Expression.
- 4. Describe work done in irreversible isothermal expanded.
- 5. Two liters of N₂ at 0°C and 5atm process is expanded isothermally against a constant external pressure of 1 atm until the pressure of gas reaches 1 litre. Assuming gas to be ideal calculate the work of expansion.
- 6. What do you understand by thermodynamic process. Write its types
- 7. What is heat? What will the change in heat at constant pressure and constant volume?
- 8. A gas occupies 2L at STP. It is provided 300 joule heat so that its volume becomes 2.5 L at 1 atm calculate the change in its internal energy.
- 9. What is system? Explain its types
- 10. During a chemical reaction increase in the volume of a system is 100cm³ at 740 mm Atmospheric pressure .Calculate the work done during the expansion

MATHS

- 1. Find the sum to *n* terms of the sequence $\left(x + \frac{1}{x}\right)^2$, $\left(x^2 + \frac{1}{x^2}\right)^2$, $\left(x^3 + \frac{1}{x^3}\right)^2$,
- 2. If 9 harmonic means and 9 arithmetic means are inserted between 2 and 3, then find the value of $A + \frac{6}{H}$. (Where A is any of the A.M.s and H is the corresponding H.M.)

- 3. If H is the harmonic mean between P and Q, then find the value of $\frac{H}{P} + \frac{H}{Q}$.
- 4. If *a, b, c are* distinct and are G.P. with common ratio r such that *a ,2b, 3c from an A.P., then r equals*
- 5. If x is added to each of the numbers 3,9 and 21 so that the resulting numbers may be in G.P., then the value of x will be
- 6. If the sides a, b, and c of a triangle ABC are in A.P. then $\frac{b}{c}$ belongs to
- 7. Three numbers are in G.P. whose sum is 70. If the extremes be each multiplied by 4 and the mean by 5, then they will from an A.P. The product of numbers is
- 8. If the sum to infinity of the series $1+2r + 3r^2+4r^3+...$ is 9/4, then find the value of r.
- 9. If $S_n=nP+\frac{1}{2}n(n-1)Q$, when S_n denotes the sum of the first n terms of an A.P., Then the common difference is
- 10. If $\log 2$, $\log(2^{n}-1)$ and $\log(2^{n}+3)$ are in A.P., then n =